蒸散作為地氣界面水熱碳循環(huán)的核心變量之一,其準(zhǔn)確測(cè)算一直是水文氣象學(xué)的難點(diǎn)問(wèn)題之一。傳統(tǒng)水文氣象學(xué)蒸散測(cè)算方法及遙感反演模型大多存在系數(shù)經(jīng)驗(yàn)性、參數(shù)化方案復(fù)雜不確定的問(wèn)題。我校地理與遙感學(xué)院潘鑫副教授、楊英寶教授研究組,聯(lián)合中國(guó)科學(xué)院南京地理與湖泊研究所劉元波研究員團(tuán)隊(duì)和英國(guó)萊斯特大學(xué)國(guó)家對(duì)地觀(guān)測(cè)中心Kevin Tansey教授團(tuán)隊(duì)針對(duì)上述問(wèn)題,近日開(kāi)展科學(xué)研究,在蒸散測(cè)算及遙感反演方面取得系列研究成果。
團(tuán)隊(duì)引入地表能量平衡理論和熱力學(xué)平衡理論,從哈密頓原理出發(fā)在原始非參數(shù)化蒸散測(cè)算方法(NP方法)的基礎(chǔ)上,分別發(fā)展了基于地表能量平衡理論的單源和雙源非參數(shù)化蒸散測(cè)算方法(SFE-NP方法和TS-NP方法),方法避免了傳統(tǒng)方法的阻抗參數(shù)化和系數(shù)經(jīng)驗(yàn)化帶來(lái)的不確定性,顯著改善了原始非參數(shù)化方法在干旱區(qū)的高估問(wèn)題,在全球范圍的通量站點(diǎn)處驗(yàn)證結(jié)果表明其精度可靠。
圖1 四種方法在全球通量站點(diǎn)處的蒸散測(cè)算精度泰勒?qǐng)D(a. NP方法,b. SFE-NP方法,c. RH-PM方法,d. TS-NP方法)
團(tuán)隊(duì)比較了輸入空間降尺度策略和輸出空間降尺度策略對(duì)蒸散遙感反演的影響,定量化揭示了以地表溫度為代表的模型輸入變量空間尺度轉(zhuǎn)換對(duì)蒸散反演精度的主導(dǎo)影響,同時(shí)明確了地表溫度晴空偏差對(duì)蒸散遙感反演的影響規(guī)律,為高空間分辨率、長(zhǎng)時(shí)間尺度蒸散可靠反演提供支撐。
圖2 不同輸入變量(BBR,寬波段反照率;LST,地表溫度;LSE,地表發(fā)射率;NDVI,植被指數(shù))空間尺度轉(zhuǎn)換對(duì)蒸散遙感反演的誤差貢獻(xiàn)
在此基礎(chǔ)上,團(tuán)隊(duì)構(gòu)建了區(qū)域及全球的蒸散遙感反演模型(RSNP模型),并在對(duì)輸入數(shù)據(jù)精度校正基礎(chǔ)上,生產(chǎn)了2001-2019年多個(gè)流域及全球的蒸散遙感產(chǎn)品,產(chǎn)品經(jīng)過(guò)通量站點(diǎn)和流域水量平衡驗(yàn)證,精度可靠,時(shí)空連續(xù)無(wú)縫。
圖3 2008-2017年鄱陽(yáng)湖濕地年蒸散空間分布圖
上述研究得到了國(guó)家自然科學(xué)基金項(xiàng)目(41701487, 42230112, 42071346)等的資助。系列成果發(fā)表于《Journal of Hydrology》《International Journal of Applied Earth Observation and Geoinformation》等期刊上,潘鑫副教授為系列論文的第一、通訊作者,河海大學(xué)地理與遙感學(xué)院楊英寶教授,中國(guó)科學(xué)院南京地理與湖泊研究所劉元波研究員,英國(guó)萊斯特大學(xué)國(guó)家對(duì)地觀(guān)測(cè)中心Kevin Tansey教授為系列論文的合作作者。
代表成果:
1. Pan, X., Yang, Z., Yuan, J., Guluzade, R., Wang, Z., Liu, S., ... & Liu, Y. (2024). A two-source non-parametric method for estimating terrestrial evapotranspiration: Validation at eddy covariance sites. Journal of Hydrology, 645, 132278.
2. Pan, X., Yang, Z., Liu, Y., Yuan, J., Wang, Z., Liu, S., & Yang, Y. (2024). A non-parametric method combined with surface flux equilibrium for estimating terrestrial evapotranspiration: Validation at eddy covariance sites. Journal of Hydrology, 631, 130682.
3. Yang, Z., Pan, X., Liu, Y., Tansey, K., Yuan, J., Wang, Z., ... & Yang, Y. (2024). Evaluation of spatial downscaling for satellite retrieval of evapotranspiration from the nonparametric approach in an arid area. Journal of Hydrology, 628, 130538.
4. Pan, X., Wang, Z., Liu, S., Yang, Z., Guluzade, R., Liu, Y., ... & Yang, Y. (2024). The impact of clear-sky biases of land surface temperature on monthly evapotranspiration estimation. International Journal of Applied Earth Observation and Geoinformation, 129, 103811.
5. Zhou, Y., Pan, X., Yang, Z., Wang, Z., Guluzade, R., Yuan, J., ... & Yang, Y. (2024). The comparison between single-point method and footprint-integrated validation method of the remote-sensing retrieval of evapotranspiration: a case study at Daman site. International Journal of Remote Sensing, 1-21.
6. Zhu, H., Yuan, J., Pan, X., Wang, Z., Yang, Z., Ding, X., ... & Yang, Y. (2024). Improving GLASS AVHRR-derived broadband thermal-infrared emissivity (BBE) using GLASS MODIS-derived BBE: A Global Long-Term Study. IEEE Geoscience and Remote Sensing Letters. 3508745.
7. Pan, X., Liu, S., Tansey, K., Fan, X., Yang, Z., Yuan, J., ... & Liu, Y. (2023). Spatio-temporal variation of evapotranspiration and its linkage with environmental factors in the largest freshwater lake wetland in China. Journal of Hydrology: Regional Studies, 47, 101424.