報(bào)告人:美國德克薩斯大學(xué)泛美分校(UniversityofTexas-PanAmerican)
馮兆生教授
報(bào)告時(shí)間:6月10日(星期三)下午3:00
報(bào)告地點(diǎn):江寧校區(qū)勵(lì)學(xué)樓A103
報(bào)告摘要:In this talk, we develop a connection between the Abel equation of the first kind, an ordinary differential equation that is cubic in the unknown function, and the Korteweg-de Vries-Burgers equation, a partial differential equation that describes the propagation of waves on liquid-filled elastic tubes. We convert the problem into an equivalent integral equation by using the Abel transformation with the initial condition. By virtue of the integral equation and the Banach Contraction Mapping Principle we derive the asymptotic expansion of bounded solutions in the Banach space, and use the asymptotic formula to construct approximate solutions to the Korteweg-de Vries-Burgers equation.
報(bào)告人簡介:馮兆生教授,2004年6月在美國德克薩斯A&M大學(xué)(TexasA&MUniversity-CollegeStation)理學(xué)院數(shù)學(xué)系攻讀并獲博士學(xué)位。2004年8月至今一直在美國德克薩斯大學(xué)泛美分校(UniversityofTexas-PanAmerican)理學(xué)院數(shù)學(xué)系從事教學(xué)科研工作,目前是終身、正教授、博導(dǎo)。主要研究方向有非線性微分方程,混沌動(dòng)力系統(tǒng),數(shù)學(xué)物理問題,應(yīng)用分析和生物數(shù)學(xué)等。目前在美國、英國、德國等國家的數(shù)學(xué)和物理學(xué)術(shù)刊物上共發(fā)表學(xué)術(shù)論文129篇,其中被SCI/SCI-E檢索的論文近110篇。近年在北美編輯出版4本英文著作,目前任Int. J. Bif. Chaos等四個(gè)SCI雜志副主編、編委等,應(yīng)邀擔(dān)任十余個(gè)國際數(shù)學(xué)會(huì)議學(xué)術(shù)委員會(huì)和組委會(huì)的委員,2006年曾任第五屆國際動(dòng)力系統(tǒng)及微分方程學(xué)術(shù)大會(huì)組委會(huì)主席。
歡迎廣大師生參加!